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Abstract 

1: Background concepts:  

Electromagnetic drive, MRN and typical speeds, Speed factor S 

Mach >> 1 driven plasmas, temperature vs speed 

Cross-sections for nuclear fusion, D-T: beam-target and thermonuclear 

2: DPF Fusion: Beam-target predominance: Throughput scaling 

Inductive voltages generate tens to hundreds of keV 

Shock speed generates around 0.5 keV 

Optimum pinch conditions for neutron yield in beam-target mode 

Throughput (Output/Input) Scaling to break-even Q =1 

Breakeven point found through numerical experiments 

Role of high pressure ion energy moderation from too high MeV through optimum 100 keV 

3: Transitioning to thermonuclear mode  

     How? 

     Optimum conditions for neutron yield in thermonuclear mode 

              Throughput (Output/Input) Scaling to break-even Q =1 

              Breakeven point found through numerical experiments 

4: Beam-target (DPFQ1) breakeven point compared to thermonuclear breakeven point     
     Comparison of DPFQ1 and thermonuclear break-even points 

     Proposing a feasible test point DPF0.01 

     Conclusions 

 

Keywords: dense plasma focus, beam-target fusion, break-even DPF, beam-target DPF, thermonuclear 

DPF  

 

Introduction 

        In the early days of dense plasma focus DPF research, the observation [1,2] that fusion neutron yield 

Yn ~ E0
2
, (E0 = the capacitor storage energy) gave rise to the hope that energy break-even could occur at 

E0 of just hundreds of MJ, simply by increasing the capacity, hence stored energy of the DPF. However it 

was shown that dominance of dynamic resistance of current sheet motion on circuit behavior as capacity 

increases leads to vanishingly small bank impedances resulting in scaling deterioration of discharge 



From Beam-target to Thermonuclear Fusion in the Dense Plasma Focus Pinch 

 
 

Walailak J Sci & Tech 2018; 15(x) 
 

2 

current, and a corresponding yield scaling deterioration to Yn ~ E0
0.8 

[3]. This suggests no break-even 

unless capacitor voltages are greatly increased, aided by increase in operational pressure [4]. 

 

1. Some background concepts for DPF:  

           Electromagnetic drive: 

 

        Interaction of electric current and magnetic field (JXB) produces high plasma speeds and 

temperature. Electromagnetic drive is efficient when the magnetic Reynolds number MRN is high. For 

electromagnetic drive to be efficient, the condition is that MRN >>1. For high Mach shock waves we 

have shown [5]    MRN ~ v
4
; where v is shock speed ;  with transition point to MRN >> 1 at v around 5 

cm/s for D-D plasma ; with lower speeds required for gases of higher atomic numbers. In the DPF this 

condition MRN >>1 is typically fulfilled because plasma speeds are highly supersonic and exceed 5 

cm/s. 

        For electromagnetic drive, the speed is governed by a fundamental factor S= (I/a) / 
0.5 

        Over range of existing DPF‟s (sub kJ - MJ) in deuterium S ~ 70 – 200, practically constant [6]. 

        Value of  S:  typically 100 (kA/cm) per Torr
0.5

 

        Value of (I/a) : Typically 200 kA/cm 

        Value of operational pressure: Typically 4 Torr (~ 0.01 atm) 

 

High Mach (Mach >> 1) shock waves: 

 

        A convenient unit of speed for electromagnetically driven systems is cm/s. (1 cm/s = 10
4
 m/s ~  

Mach 10 in D-T). In DPF‟s, speeds are typically 10 cm/s and higher.  Thus DPF plasma drives are 

characterized by Mach > 100 supersonic shock waves. Shock wave systems are equi-partitioned with 

approximately equal amounts of energy in the thermal modes and the kinetic components. The shock 

conservation equations enable the plasma temperature T to be computed [7] from the shock speed q.  

For a 50%-50% D-T shock system:   

 

T = 2.8x10
-5

q
2                                             

(1) 

 

            

   Cross-sections for D-T nuclear fusion :  

 

        The fusion cross-section applicable to D-T Beam - target is shown in Fig. 1. 

 

        We note that the cross-section  at 10 keV deuteron energy is 10
13

 higher than that at 1 keV ; and 

that from 10 keV to peak value of   at ~ 100 keV, there is another increase of  10
3 

in the cross-section. 

Peak value of  occurs at ~100 keV.  At higher beam energy, drops. At beam ion energy of 1 MeV,  

has dropped almost 100 times in value. 
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   Fig 1.  D-T fusion cross-section vs deuteron energy [8,9] 

 

 

Cross-sections for nuclear fusion: Thermonuclear: 

 

        Relevant cross-section is the <v> ie product of cross-section and particle speed v averaged over 

Maxwellian distribution at temperature 

 

 
           Fig 2.Value of <v> based on Maxwellian distribution for D-T reaction [8,9] 

 

    Note that increase of temperature from 0.1 to 1 keV increases the value of <v> increases by 10
9
 times. 

Further increase of temperature from 1 to 10 keV, <v> increases a further 10
4
 times. There is then a 
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small increase of less than 10 times in <v>  to its peak value at T= 70 keV. From <v> point of view, 

good operational point is around 70 keV 

 

2: Present-generation DPF (sub kJ to MJ) operate predominantly in beam-target mode: why? 

 

        All present DPF‟s (sub kJ to MJ) operate with same speed: axial around 10 cm/s and radial around 

20 cm/s [6,7]. This gives a temperature in D-T of ~ 0.3 x 10
6
 K for the axial phase plasma and ~ 1.2 x 

10
6
 for the radial phase on axis shock; to about 2.4 million K in the stagnated plasma column on shock 

reflection on-axis. The gross pinch temperature is typically < 0.5 keV (1 keV = 1.14 x 10
7
 K) – very low 

temperature from fusion point of view.  

        On the other hand, resulting from highly supersonic piston action, inductive voltages (back EMF 

motor effect, if we like) typically 20 – 40 kV are generated, producing 60 – 120 keV ions. These energies 

are near optimum from fusion point of view. 

        The two effects combined to ensure low thermonuclear component compared to the Beam – plasma 

target component of the fusion yield. This situation has the advantage of low investment in plasma energy 

vs optimum beam energy 

 
Beam-target fusion scaling: output fusion energy to input energy. 

 

        We first ask the question: How many D-T neutrons (from beam-plasma target) do we get per unit 

pinch energy. Modelling by the Lee code provides the number of beam-target neutrons [10-12] as 

follows: 

 

    Yb-t= Cn ni Ipinch
2
zp

2
(ln(b/rp))σ/U

1/2  
       (2) 

 

    where Ipinch is the current flowing through the pinch at start of the slow compression phase; rp and zp 

are the pinch dimensions at end of that phase. Here Cn is a constant which in practice we will calibrate 

with an experimental point. Here all quantities are in SI units with U = 3Vmax (Vmax is maximum induced 

tube voltage) in keV and the constant Cn = 1.4 x 10
7
 (a calibrated value) 

    The pinch energy [13] at temperature T is  

 

        Epinch= [kT/ (-1)] ni(1+Zeff) rp
2
zp,                          (3) 

 

        where k = Boltzmann constant,  = specific heat ratio = 5/3 ; Zeff = 1 (for fully ionized D-T plasma). 

Assume an equilibrium pinch, equate the confining magnetic pressure to the hydrostatic plasma pressure. 

Thus:   

 

         Ipinch
2
 = 2x10

7
 nikT (1+Zeff)rp

2      
(4) 

 

        Divide Yb-t by Epinch, replacing Ipinch
2
 in Yb-t by the RHS of Eq (4) we get the required number of 

beam-target neutrons per unit pinch energy. Note: ((ln(b/rp)) ~ 2  and zp ~ 1.4 a  ([6,7] for fully ionized 

hollow anode DPF) 

 

        General scaling for number of D-T DPF beam-target neutrons 

 

         Yb-t / Epinch = 5 x 10
14

 ni a [σ/U
1/2

]       (5) 

 

        This general scaling stipulates that the number of beam-target neutrons depends on the pinch ion 

density, the anode radius „a‟; and the energy of the D-T beam ions through the fraction [σ/U
1/2

]. 
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This beam – target scaling is optimised by choosing optimum factor [σ/U
1/2

], using Fig 3. 

 
                         Fig 3. Value of [σ/U

1/2
] versus U 

 

        Note : At optimum deuteron beam energy of 100 keV, the scaling for Yb-t / Epinch is optimized: 

 

        (Yb-t / Epinch)100keV = 2.5 x 10
-14

 ni a                     (6) 

 

        A D-T neutron has energy of 14.1 MeV ie 2.26 x 10 
-12

 J. Estimating that Epinch ~10% of the stored 

energy E0, then we have the ratio 

 

        Q100keV = (Eb-t / E0)100keV = 6 x 10
-27

 ni a                    (7) 

 

        For Q > 1    ( ie better than break-even) 

 

         6 x 10
-27

 ni a > 1          (8) 

 

        Example: „a‟= 1 m then for Q>1   

        ni > 1.7 x 10
26

 m
-3

          (optimum 100 keV)     

        (ie 6 atm of fill pressure is sufficient for break-even). 

 

        Numerical experiments disagree. In fact thousands of runs have been made using the Lee code [10-

12] in DPF‟s of meter-size anode radius at beam-target conditions (following present generation DPF‟s 

with axial speed around 10 cm/s) – over years! Nothing approaching anywhere near break-even has been 

observed in these numerical experiments at such DPF sizes and densities; and even bigger sizes and 

greater densities! 

 

        Discrepancy- is due to condition of 100 keV beam ion energy, which is not met in the code results. 

 

        We analyse the induced tube voltages [10,12]. 
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           V =               V1                               +             V21             V22                   (10) 

       We compute the various components and the induced tube voltage in Table 1. 

 

Table 1.   Computed components of induced tube voltages 

 

  Tube dI/dt*position   speed*I   dz/dt   drp/dt             Beam ion 

 

  Voltage kV term       kV  term  kV   term kV   term  kV Energy keV 

 

             V              V1        V2        V21       V22 

 NX2 15kV 25.1 -10.6 35.7 17.1 18.6 75 

PF1000 27kV 25.7 -29.8 55.5 29.1 26.4 77 

PF1000 27kV 

RESF=0.1 57.0 -65.6 122.6 62.9 59.7 171 

25MJ 35kV 61.7 -285.2 347.0 185.2 161.8 185 

162MJ 90kV 106 -484 590 308 282 317 

16200MJ 900kV 1459 -6121 7581 3970 3610 4380 

 
        For DPF‟s operating in the beam-target mode, the values of speeds are kept at low levels of 10 cm/s 

for axial and 20 cm/s for the radial phases. This ensures plasma temperatures that are low for fusion, at 

the same time ensures high ion beam speeds.  

        The speed factor S = (I/a)/ 0
1/2 

needs to be kept at around 100. Thus as „a‟ increases, I increases 

proportionally; so with (I/a) = 200 kA per cm anode radius, we need 20 MA for 1 m anode radius. The 

increase in operational pressure to 6 atm will require a further increase of current to around 500 MA. A 

large DPF (with smallest possible radius ratio c) has a dynamic resistance (ie resistance due to motion) of 

2 m. Thus to get a current of 500 MA requires a capacitor voltage of at least 1 MV. From the last 

example of Table 1, which is just under 1 MV, the beam ion energy is about 5 MeV.  

        Thus the scaled-up m-sized DPF operated at atmospheric pressure will have beam ion energies of 

multiple MV; way past optimum [σ/U
1/2

]. Indeed at 10 MeV this cross-section parameter has dropped by 

1000 times from optimum value. These estimates provide a guide for numerical experiments for a scaled-

up DPF, to obtain an operational point for a B-T device; although we know the beam ions will be far too 

energetic. 

 

Beam-target numerical experiment (1.2 MV, 5 atm) generating Q = 0.002 

 

Table 2. Parameters of a 1.2 MV, 5 atm a = 1m D-T DPF 

Lo Co b a zo ro m 

20 10000 120 100 60 0.15 

massf   currf massfr currfr Model Parameters 

0.08 0.7 0.2 0.7 

 

  

Vo Po MW A At-1 mol-2 Operational 

1200 4000 5 1 2 Parameters 

 
Table 3a: Computed plasma parameters for 1.2 MV, 5 atm D-T DPF 

   E
0
 

      

RESF 

         

c=b/a      I
peak

     T
p
   v

a
    v

s
   v

p 
  r

min
   z

max
    

 

V
max

    n
i
 

   kJ          kA   10
6

 K cm/s  cm/s  cm/s  

              

cm    cm    ns   kV 

 

10
23

/m
3

 

7.2E+06 0.11 1.20 3.5E+05 0.11 8.3 8.5 6.8 30.0 162 6527 1,337 1051 
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Table 3b: Computed neutron yield parameters for 1.2 MV, 5 atm D-T DPF 

   Y
n
   EINP    SF       ID E

N
  E

N
/E

0
 

   
 10

10

      %     kA/cm kJ      Y
th
    Y

b-t
    Y

n
 

6.1E+08 43.4 55 3476 1.4E+04 0.002 5.0E-12 6.1E+18 6.1E+18 

 
 

        Beam ion energy 5 MeV; number of ions in beam = 1.3 x 10
22 

[14,15]; number fusion reacted is 

6.1x10
18

; with remnant practically 1.2 x 10
22

 ions available for fusion reaction in exiting the pinch. 

[/U
0.5

] is down from optimum value by almost 1000 times (see Fig 3). 

 

        Using a SIRIM code, estimates by M Akel [16] indicate that  a 1 m path in 5 atm D-T is sufficient to 

slow D-T beam ions to 100 keV. In schematic shown below the ion beam will be moderated to 100 keV 

in its path (> 1m) before leaving the chamber. In thus slowing down the 5 MeV D-T beam so that the 

beam energy goes down towards its optimum fusion value and finally below that value, the beam-target 

yield will achieve its optimum value of almost 1000 times higher than that computed by the Lee code 

which applies at the exit of the focus pinch. Such a schematic is shown in Fig 4. With the high pressure 

path enhancement, the example that is discussed reaches a Q~1. 

 
Fig. 4 Schematic showing ion beam with fusion enhancement 

 

Discharge current waveform and radial trajectories of 1.2 MV, 5 atm, a = 1m; D-T DPF 

 

The discharge current and radial trajectories are shown in Figs 5 and 6. 

 

          
Fig 5. Discharge current of the DPF- 1.2 MV, 5 atm D-T 
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Fig 6. Pinch trajectories during radial phase for DPF- 1.2 MV, 5 atm D-T 

.  

3: Transitioning to thermonuclear mode 

 

         To operate the DPF pinch at thermonuclear conditions for D-T, the pinch temperature needs to be 

increased from the sub-keV of present-day DPF‟s to near 70 keV. Analysis (below) shows an optimum 

temperature of 20 keV (see Fig 7 below). This requires about 7 times faster plasma speeds than presently 

used. This first estimate (oversimplified) requires the axial speed to be increased to 70 cm/s and radial 

speed to be increased to 150 cm/s. Speed factor S needs to increase to 1000 (from present day 100). 

        Moreover, density is ~1000x higher. (as will be seen in next section). 

        Hence current per unit anode radius increases to 60 MA/cm (from present-day 200 kA/cm ). 

 

 

Thermonuclear scaling: derive the ratio: Yth / Epinch at thermonuclear pinch conditions. 

        Yth = 0.5ni
2
rp

2
zf<σv>   where <σv> is the thermalised fusion cross section-velocity product 

corresponding to the plasma temperature T [8,9], for the lifetime of the pinch . 

        Dividing this number by Epinch: we obtain the number of D-T neutrons per J of pinch energy. 

        Yth / Epinch = 0.17 <σv> /(kT)] ni      

where <σv> is the thermalised fusion cross section-velocity product corresponding to the plasma 

temperature, for the lifetime of the pinch . 

 

General scaling of Q as function of ni at pinch temperature T 

 

Eth/E0 =     240[<v>/kT] ni      

 

where kT is in keV. Here estimate Epinch = 0.1 E0 and energy of 1 D-T neutron as 14.1 x 10
3
 keV. Note the 

Q value is a function of (ni  and the fusion x-section parameter [<v>/kT]. 

 

It is useful to plot the value of [<v>/kT].as a function of T in order to optimize the yield shown in Eq 

(12) 
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 Fig 7. Optimising the temperature at which [<v>/kT] is highest 

 

Selecting optimum operational temperature 

 

        From [<v>/kT] curve, optimum occurs around T = 20 keV; highest value = 2.1 x 10
-23

 m
3
s

-1
(keV)

-1
. 

Such a concept was expressed in seminal form by Lawson [17,18] who selected 25 keV, pioneering the 

concept of Lawson criterion.  

 

Scaling of Q as function of ni at optimum temperature of 20 keV 

 

        Eth/E0 = 5x 10
-21

 ni                (13) 

 

    Fixing operation at this optimum temperature, the requirement for better than break-even ie Eth/E0 >1 is  

 

        ni > 2 x 10
20

 m
-3

s               20 keV             (14) 

 

        This criterion applied specifically to the DPF is comparable to the well-known Lawson‟s ni 

criterion (ni > 1.5 x 10
20

).  

 

Example 

 

         For present-day DPF operating at T ~ 0.5 keV pinch duration is ~10-20 ns per cm „a‟, governed by 

transit time of small disturbance speed across the pinch diameter.  

        At 20 keV the lifetime is around 2 ns per cm „a‟. For a = 1 m the lifetime  is 200 ns. 

        For Q > 1, the requirement is ni  > 10
27

; close to 50 atm 

These estimates provide guidance for numerical experiments to find an operational point for Q>1. 

 

Numerical experiments found an operational thermonuclear point for Q>1 as follows, with bank, tube abd 

operational parameters in Table 4; and computed plasma, pinch and energy parameters in Tables 5a and b. 

 

Table 4: Parameters of a thermonuclear DPF at Q >1. 

L0 C0 b a z0 r0 m 

18 7,000 160 155 13,500 0.1 

massf   currf massfr currfr Model Parameters 

0.1 0.7 0.4 0.8 

 

  

V0 P0 MW A At-1 mol-2 Operational 

800,000 55,000 5 1 2 Parameters 
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Table 5a: Computed plasma parameters for thermonuclear DPF 

   E
0
 RESF    c=b/a    I

peak
 T

p
   v

a
    v

s
   v

p 
   r

min
   z

max
  V

max
 n

i
 

   kJ        kA 10
6

 K cm/s  cm/s  cm/s     cm    cm    ns kV 10
23

/m
3 

2.2E+12 0.062 1.03 6.2E+07 267 242 257 205 30.2 258 250 1.2E+07 7E+04 
 
Table 5b: Computed neutron yield parameters for thermonuclear DPF 

 

   Y
n
    EINP     SF    ID     E

N
   E

N
/E

0
         Y

th
       Y

b-t
       Y

n
 

      %    kA/cm     kJ   

 

        

1.1E+27 45.7 1,719 4.0E+05 2.4E+12 1.09 1.1E+27 2.9E+22 1.1E+27 

 

 
The numerical experiments also  produce the current waveform, dynamics and temperature for this thermonuclear 

DPF shown in Figures 8 and 9a and b. 

 
Fig 8. Discharge current of the thermonuclear DPF 

 

Thermonuclear DPF - Radial Dynamics and Temperature 

 
Fig 9a Pinch trajectories and speeds during radial phase for thermonuclear DPF- at Q>1 

 

 
Fig 9b Plasma Temperatures during radial phase for thermonuclear DPF- at Q>1. 
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4: Comparison: Beam-Target  vs Thermonuclear 

 
In Table 6 we compare the two break-even points we have found for the beam-target and the 

thermonuclear DPF‟s. 

 

Table 6: Comparison of beam – target versus thermonuclear break-even points 

D-T     E
0
        V

0
        P

0
       a    T             U        Y

n
      Q Effective Q 

 
    GJ     MV                  Atm      m 

                        

keV            keV At pinch 
 

Path beyond pinch 

B-T (DPFQ1) 7.2 1.2 5.3   1 0.1 4.0E+03 6.0E+18 0.002     ~1 
Thermonuclear 2.E+06 800 72.3 1.6 23 1.2E+07 1.1E+27 1.1 

  

The B-T point (DPFQ1) requires much less extreme conditions; though still far away from what is 

technically proven. For example, the highest pressures that DPF‟s have been operated at is not much more 

than 50 Torr, less than 0.1 atm [19,20]. 

 

A technically feasible device is therefore proposed – DPF0.01- to reach Q~0.01.  

 

The bank and tube parameters are given in Table 7. 

 

Table 7: Bank and tube parameters for DPF0.01 

       L0 nH         C0 F            b cm                a cm                 z0 cm 

                                                                                
R0   m 

30 20 18 15 3 3 

       massf             currf         massfr             currfr 
 0.08 0.7 0.2 0.7 
 

  

     Vo kV   Po Torr          MW             A        At-1 mol-2 
 

900 100 5 1 2 
  

Using these bank and tube parameters, numerical experiments produce the current waveform shown in 

Fig 10 and plasma and energy parameters compiled in Tables 8a and 8b. 

 

 
Fig 10. Discharge current of DPF0.01 
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Table 8a Computed plasma parameters DPF0.01 

      E
0
         RESF 

      

c=b/a       I
peak

    T
p
     v

a
  

          

v
s
    v

p 
 

           

r
min

           z
max

           V
max

          n
i
  

      kJ          kA   10
6 

     

cm/s  
        

cm/s  
        

cm/s  
            

cm             cm            ns            kV       10
23

/m
3 

8100 0.08 1.2 18000 2.3 11.9 27.3 18.1 4.1 23.9 282 746 31.5 
 
Table 8b: Computed neutron yield parameters for DPF0.01 

         Y
n
         EINP          SF          ID E

N
      E

N
/E

0
       Y

th
       Y

b-t
        Yn   N

ion
 in beam 

            %        kA/cm kJ 
  

        
  6.6E+13 36.1 0.5 117 0.15 2E-05 4.5E+06 6.6E+13 6.6E+13 8.4E+18 

 
The code computes a Q of 2 x10

-5
; with a beam ion energy > 2 MeV. This excessively high ion energy 

has dropped the fusion cross-section parameter [/U
0.5

] by almost 1000 times. The operational pressure is 

only 100 Torr, so a suitable fusion enhancing drift tube of length 1 m containing 10 atm D-T gas is 

needed, see Fig 11. Such a schematic for the DPF has been suggested by Hossein Sadeghi et al [21]. This 

high pressure section may for example be separated from the DPF chamber by a molybdenum foil of 

several microns thickness through which the D-T beam passes with little attenuation. The D-T ions exit 

the pinch in a beam with divergence around 10-20 degrees. A beam-shaper BS, uses magnetic field to 

reduce this divergence so that most of the remnant ions travels down the high pressure tube. The fusion 

yield is enhanced as the energy of the ions attenuates downwards going through the optimum fusion value 

of 100 keV. The result is a Q of 0.01. 

 
                                Molybdenum foil partition 

Fig 11. Schematic of the fusion enhancing reaction tube containing 10 atm D-T gas. 

 

 

Conclusions 

Beam-target scaling at optimum beam ion energy of 100 keV suggests 1.2 MV 5 atm D-T DPF would 

suffice for breakeven at stored capacitor energy of 7 GJ in a device designated as DPFQ1. It is noted that 

such a device generates D-T beams with ion energies far above the optimum 100 keV, however the high 

pressure operation ensures energy moderation to through optimum within the DPF chamber thus 

enhancing the fusion yield to the optimum value. For comparison scaling of thermonuclear DPF is 

obtained, guiding numerical experiments to an operational point of 800 MV 70 atm, 23 keV [achieving Q 

= 1.2 at stored energy of 2 million GJ]. Comparison of the two possible operational points shows that the 

beam-target Q~1 point is 700 times lower in operational voltage, 300,000 times lower in capacitor energy, 

14 times lower in operational pressure than the thermonuclear Q ~ 1 operational point. The beam-target 

operational point (DPFQ1) is much closer to present-day DPF in every operational parameter than the 
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thermonuclear breakeven point. However the capacitor bank requirements and operational pressure of 

DPFQ1 are still considerably above what has been proven for DPF‟s. Therefore, a present-day 

technologically feasible point: DPF0.01: 900 kV (8 MJ) 100 Torr with Q ~ 0.01 is proposed for initial 

test. This DPF necessitates a fusion booster 10 atm D-T target tube. Finally we note that this presentation 

deals with gross DPF pinch (scalable); and have not discussed structures within the pinch (such as hot 

spots) which could modify the gross scaling. 
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