SAND2012-0451C

Dense Plasma Focus Neutron Generator for Active Interrogation

Kenneth W. Struve

Sandia National Laboratories

&

Bruce L. Freeman

Raytheon-Ktech Corporation

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

I will discuss

- A neutron source using a dense plasma focus (DPF) can provide up to 2 x 10¹² neutrons per shot with no extension of current technology for use in active interrogation
- Demonstrated scaling of neutron yield with current at I⁴ or I⁵ offers the possibility of a much larger sources
- But no DPF device has demonstrated yields higher than 2 x 10¹²
- Joint US-Russian work could progress by using existing designs and adding tritium, and by exploring current scaling limits with higher voltage designs

A plasma focus generates intense beam-induced x-ray and neutron fluxes from plasma instabilities

Neutrons are not thermonuclear, but are beam induced

- Origin of the ion and electron beams can be best explained in a magnetohydodynamic analysis by the breaking of symmetry of each side of an m = 0 instability neck by Hall and FLR terms.
- Current density in the neck evolves into a disruption with anomalous resistivity when the line density in the neck drops below the critical value.
- This leads to energetic on-axis singular ion beams and off-axis reversed ion flow of lower energy deuterons.
- Electron beams typically have energies in the range of than 100 keV to 1 MeV.

Ref. M. G. Haines, "A review of the dense Z-pinch," Plasma Phys. Control. Fusion 53 (2001) 093001.

A plasma focus device can be a good neutron source

- Potential applications are:
 - activation analysis
 - neutron radiography
 - actinide waste reduction
- Activation analysis of closed containers may require significant neutron flux
- A dense plasma focus (DPF) can be portable and have a small volume
 - Reactors not feasible
 - Z-pinch compression devices are too large
- DPF devices have demonstrated over 10¹² neutrons per shot with deuterium gas fills
- Past experiments have shown that neutron yield Y scales with current I to the fifth power $Y_{neutrons} \sqcup I^5$

DPF Scaling: Neutron Yield ∞ I⁴ to I⁵

- DD neutron scaling has been well demonstrated across more than 5 orders of magnitude (I⁵ and conservative I⁴ scaling are shown).
- The 14-MeV DT neutron yield is experimentally ~ 80 100X larger than the DD yield.
- The low-cost, slow-pulsed-power requirement allows one to build a high current DPF for ≤ \$10M.
- Modern capacitors and switches AND existing designs reduce the risk.

O. Zucker, et. al., "Design of a repetitively pulsed megajoule dense-plasma focus," Lawrence Livermore Laboratory report UCRL-51872, Aug. 1, 1975.

Demonstrated Performance & Scaled Systems Projections

Status	Peak Current (MA)	Bank Voltage (kV)	DD Neutron Yield (n/shot)	Est. DT Neutron Yield (n/shot)
Demonstrated 72 kJ LANL	1.0	20 of 20	2-4x10 ¹⁰	~2.4x10 ¹²
Demonstrated 480 kJ TAMU	1.5	30 of 60	2x10 ¹¹	~1.6x10 ¹³
Demonstrated LANL DPF 6.5	2.2	50 of 50	1-2x10 ¹²	~1.1x10 ¹⁴
Scale (~I ⁵)	4.0	70-80	~2x10 ¹³	~1.6x10 ¹⁵
Scale (~I ⁵)	6.0	120	~1.5x10 ¹⁴	~1.2x10 ¹⁶

But the neutron yield appears to saturate under some conditions

Neutron yield vs bank energy for a Mather-style PF

V. Ya Nukulin and S. N. Plukhin, "Saturation of the Neutron Yield from Megajoule Plasma Focus Facilities," Plasma Physics Reports, 2007, Vol. 33, No. 4, pp. 271-277.

Neutron yield saturation

"As the discharge energy increases, the neutron yield is saturated. As a result, attempts to reach neutron yields higher than ~10¹² neutrons per shot have not yet met with success in most PF experiments."

V. I. Krauz, et. al., "Dynamics of the Structure of the Plasma Current Sheath in a Plasma Focus Discharge," Plasma Phys. Reports **37**, No. 9, pp 742-754 (2011).

Two options for the yield saturation problem

- 1. Limit designs to the 2 x 10¹² neutrons/shot level
 - Operate at the 2 3 MA level
 - Investigate DT fills to increase yield to 10¹⁴
 - Potential use with a neutron multiplier
- 2. Address yield scaling with current and voltage
 - Previous research has focused on increasing capacitance
 - Instead look at increasing bank voltage

Plasma Focus Characteristics

- Pulsed power used is relatively low voltage, long rise-time design.
- The plasma focus electrode structure is physically very small.
- The capacitor bank can be relatively small and cable connected to the plasma focus load.

Anode = 10 cm OD Cathode = 15 cm ID Pyrex glass insulator

Reduced neutron pulse width electrode set

The pulsed power risk for a 1 to 2 MA DPF is small

- The required current rise time for such a DPF is ~ 4 5 μs.
 - Present capacitor designs are adequate.
 - Existing low inductance switch designs are adequate for a DPF application.
- The DPF load can be physically separated from the pulsed power elements.
 - Use cable coupling between the capacitors/switches and the load.
 - Place the DPF load 5- to 8-m from the capacitors.
- The voltage for a full-scale DPF is relatively low (< 120 kV).
 - Insulator technology at these voltages is understood.
 - Existing cable technologies are adequate for a scaled facility.
- Therefore, minimal or no pulsed power risk is present.
- This provides a technical approach to quantify science risks at low cost.

A 2 MA magnetic field driver built for laser-plasma experiments at the Univ. of Texas is an example

- 2 MA, 1.7 μs risetime
- Consists of ten
 3.1 µF, 100 kV
 capacitors
- Each has its own switch
- Current delivered to load through 150-kV cables
- Portable. Can be moved to a laser

A DPF neutron generator

The second option is to investigate higher voltage designs

Based on the premise that pinch current is limited by plasma resistance.

S. Lee, "Neutron yield saturation in plasma focus: A fundamental cause," Appl. Phys. Lett. 95, 151503 (2009).

Driver is modeled as an LRC circuit

$$I_{peak} \gg \frac{V_o}{Z_o} \begin{cases} 1 - \frac{\rho}{4} \frac{R_o}{Z_o} + \dots \end{cases}$$

where
$$Z_o = \sqrt{\frac{L}{C}}$$

So, to increase current either:

- 1. Decrease impedance Z_0 , or
- 2. Increase charge voltage V_o

Peak current vs. Z_o for several charge voltages, with $R_o = 7 \text{ m}\Omega$

Two development paths make sense for joint US-Russian collaborations

- Path 1 Design a compact machine matching the best yield previously obtainable, and operate with a deuterium-tritium fill to obtain yields near 10¹⁴ per shot
 - Use a compact capacitor system similar to earlier LANL designs to access previous performance at the 2 to 3 MA level
 - Reestablish neutron yield at 10¹² per shot
 - Introduce deuterium-tritium fills to obtain higher yields, with a goal of 10¹⁴ per shot
 - Develop into an engineered, user-friendly device for neutron applications
- Path 2 Design and build higher voltage devices to minimize plasma resistance effects, with the potential of even higher yields
 - Explore D-D neutron yield scaling with current at higher voltage
 - Validate scaling with deuterium-tritium fills
 - Optimize design for a user-friendly device that can be used for neutron testing

Summary

- A neutron source using a dense plasma focus (DPF) can provide up to 10¹² neutrons per shot with no extension of current technology
 - The driver can be compact and portable
 - Could be used for fast neutron activation, radiography, other applications
- Demonstrated scaling of neutron yield with current at I⁴ or I⁵ offers the possibility of a much larger source
- But no DPF device has demonstrated yields higher than 2 x 10¹²
 - So-called neutron saturation effect
 - Not well understood. May be related to plasma resistance or driver voltage
- Joint US-Russian work could progress on two fronts:
 - Develop a compact device using existing designs, but increase yield using deuterium-tritium fills
 - Explore limits of yield scaling with higher voltage devices with the potential payoff of even higher yields

